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Abstract—In this paper we present a novel method
for computing solenoidal eigenmodes and the corre-
sponding eigenvalues of the vector Helmholtz equa-
tion. The method employs both vector and scalar fi-
nite element basis functions to yield a discrete gener-
alized eigenvalue problem that can be solved by stan-
dard iterative techniques. The technique is applicable
for analysis of 3D inhomogeneous resonant cavities.

I. INTRODUCTION

We are interested in determining the electromagnetic
fields within closed perfectly conducting cavities that may
contain dielectric and/or magnetic materials. The vector
Helmholtz equation is the appropriate partial differential
equation for this problem. It is well known that the elec-
tromagnetic fields in a cavity can be decomposed into dis-
tinct modes that oscillate at specific resonant frequencies.
These modes are referred to as eigenmodes, and the fre-
quencies at which these modes oscillate are referred to as
eigenfrequencies. Qur present application is the analysis
of linear accelerator components. These components have
complex geometry, hence unstructured finite-element type
grids are used to model the geometry.

Numerous researchers advocate the use of H (curl) vec-
tor finite elements (also know as edge, or Nedelec ele-
ments) for solving computational electromagnetics prob-
lems on unstructured grids [1]-[7]. The H/(curl) vector
finite elements enforce the tangential continuity of fields,
but allow jump discontinuities of the normal component
of fields, which is required for modeling electromagnetic
fields in inhomogeneous regions. In addition H(curl) vec-
tor finite elements accurately model the null space of the
curl operator, which has been shown to be essential for the
elimination of so-called “spurious modes” in frequency do-
main electromagnetics [8] and charge conservation in time
domain electromagnetics [9].

Electromagnetic eigenvalue problems can be solved us-
ing H(curl) vector finite elements. Typically the Galerkin
procedure is used to derive a discrete form of the electric
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field vector Helmholtz equation, resulting in a sparse, gen-
eralized eigenvalue problem. For small problems standard
dense-matrix eigenvalue algorithms such EISPACK [11]
can be used to compute all of the eigenfrequencies and
eigenmodes. For large problems iterative methods such
as Lanczos or Arnoldi are preferred [14]. These iterative
methods take advantage of the sparsity of the matrices,
and in addition they allow the user to efficiently compute
a small set of extremal eigenvalues (largest or smallest).
In practice the user is interested in the smallest eigenval-
ues and the corresponding eigenmodes as these are often
the dominant modes. In addition, due to the inherit dis-
cretization error of finite element methods, only the small-
est eigenvalues and corresponding eigenmodes are accu-
rate.

The difficulty in applying general-purpose itera-
tive eigenvalue solvers towards the H (curl) discretized
Helmholtz equation is that this equation has a large num-
ber of zero-valued eigenvalues, corresponding to the irro-
tational solutions of the Helmholtz equation. This degen-
eracy of eigenvalues causes the iterative methods to fail to
converge to the desired smallest non-zero eigenvalues. In
[15] it was argued that if the initial vector used to start
the Lanczos iteration were orthogonal to the null space
of the curl operator than the iteration would converge to
the desired solenoidal eigenmode with smallest eigenvalue.
While this is true in exact arithmetic, in finite precision
arithmetic this process is not numerically stable. For rela-
tively small problems with n &~ 1000 even double precision
is not good enough to achieve convergence. A modified
Lanczos algorithm was proposed in [16] that applied a
projection operator to the Lanczos vectors at every iter-
ation to remove any irrotational components. While this
method may indeed be effective for modestly sized prob-
lems, it is not clear that the method is scalable, i.e. the
projection operation requires that a Poisson equation be
solved to machine precision at every iteration of the Lanc-
zos method, and this becomes increasingly difficult as the
dimension of the problem increases. In [15], [17], [18] a
spectral transformation is proposed such that the desired
smallest non-zero eigenvalues become the extremal eigen-
values. This procedure is numerically stable and is an
effective technique for achieving converge to the desired
eigenvalues. In fact the authors of the ARPACK iterative
eigenvalue solver package recommend this approach for



computing interior eigenvalues [13]. The disadvantage of
this approach is that the solution of the modified eigen-
value problem requires repeated inversion of a matrix that
can be quite ill-conditioned.

In this paper we present an alternative formulation of
the electromagnetic eigenvalue problem in which the zero-
valued eigenvalues, corresponding to the irrotational solu-
tions of the Helmholtz equation, are arbitrarily shifted to
the middle of the spectrum. Thus the desired eigenvalues
are now extremal and standard iterative eigenvalue solvers
can be employed without modification. The new formula-
tion employs both H(curl) vector finite elements and the
standard nodal scalar finite elements. In the sections fol-
lowing we first review the vector Helmholtz equation and
the alternative discrete formulation of the problem. Then
we present results for several simple conical problems in
order to validate the approach, and we finish with a real
application, that of a 3D inhomogeneous linear accelera-
tor induction cell.

II. VECTOR HELMHOLTZ EQUATION

A. Continuous Case

We are interested in solving the vector Helmholtz equa-
tion in a 3-dimensional inhomogeneous volume (2,

V x p 'V x E —w?E =0in 0, (1)

with boundary equation 7 X E=0on 012, where E is the
electric field vector, 4 and € are the tensor permeability
and permittivity, and w is the radian frequency. Equation
(1) admits to two types of solutions; irrotational field so-
lutions and solenoidal field solutions. An irrotational field
is the gradient of a scalar potential function

Ey =-V¢. 2)
Inserting (2) into (1) we see that w = 0 for irrotational
fields. Conversely, by taking the divergence of (1) we see
that if w # 0 then the field must be solenoidal,

V- eE, = 0. (3)

Since the permittivity may not be continuous, equation
(3) is best understood in the variational sense: we multi-
ply (3) by a scalar potential ¢ that is zero on the bound-
ary, and then integrate over the domain 2 and employ the
divergence theorem to yield

/ €E, V¢ =0. (4)
Q

Equation (4) states that a solenoidal solution of (1) is or-
thogonal to every irrotational field. Therefore solutions
of (1) can be decomposed into irrotational (w = 0) and
solenoidal (w # 0) solutions, with every solenoidal solu-
tion being orthogonal to every irrotational solution.

B. Discrete Case

We discretize the electric field using a H (curl) finite ele-
ment space Wh of dimension n defined on a mesh. We as-
sume H (curl) vector finite elements of the form proposed
in [1], although the degrees of freedom can be modified
(hierarchical vs. interpolatory, etc.) without any effect
on the conclusions to follow. In the numerical simula-
tions in Section V. we employ lst-order elements; again
the use of higher-order finite element basis functions does
not modify premise of this paper. The discrete electric
field E is given by

=" eWi, (5)
i=1

where the vector e € R™ is the vector of degrees-of-
freedom (DOF). There is a one-to-one correspondence be-
tween E and e. We denote the computation of E given e
as e — E and the computation of e given EasE=e.
Note that = is a projection and can be applied to any
electric field E € H(curl), hence the computation of the
approximate field E given an arbitrary E is denoted by
E=e—E.

Assume that the boundary condition # x E = 0 is built
into the space W". Employing the Galerkin procedure to
(1) results in a generalized eigenvalue problem

Ae = w’Be, (6)

were the matrices A and B are given by

Am:/Qu‘IVXWi'VXWJ’ ()
Bijz/ﬁwi'wj- (8)
Q

The details of the computing the inner products and fill-
ing the sparse matrices can be found in finite element
textbooks [19], [20] (note that the vector finite elements
discussed in [20] are different the the elements used in this
paper).

An important property of the H(curl) vector finite ele-
ment method is that the discrete Helmholtz equation (6)
has the same decomposition of solutions as the original
PDE. Let L" C Hy be the space of standard nodal finite
element basis functions of dimension k¥ defined on the in-
terior of the mesh and of the same order as the H(curl)
elements W" (in this paper we refer to the H(curl) ele-
ments as having integer order as per [1], rather than as
“half-order”). Define the subspace

Wh = {veWh,va—O} 9)

It can be shown that the finite element, spaces L* and W}
are related by VL" € Wh; the gradient of every nodal

wr?
basis function can be written as a linear combination of



H(curl) elements with zero curl [1]. This is often referred
to as an inclusion condition [10], it is a discrete version of
the vector identity V x V¢ = 0. Define the vector spaces

F:{feR’“,éeLh,¢~>:>f} (10)
and
V:{veR",E,»T eWiﬁ,EiT:v}. (11)

The discrete gradient operator is a sparse n by k& matrix
P such that

v=Pf, where veV and f € F. (12)

The vectors v € V form the null space of the stiffness
matrix A,

APf =0 forall f € F. (13)

Therefore there are exactly k solutions of (6) with w =0,
these are the static solutions of (6) with non-zero diver-
gence.

Assume we have a discrete solenoidal solution to (6),
i.e. a vector u that satisfies

Au = w’Bu with w # 0. (14)

Multiplying (14) above by an arbitrary irrotational vector
v eV gives

vI'Au = fTPTAu = W2 fTPTBu =0, (15)

the discrete solenoidal solutions of (6) are orthogonal to
the discrete irrotational solutions according to the inner
product z7By. Note that the product

ffPTBu =0 (16)
is exactly the discrete version of (4), the discrete

solenoidal solutions u satisfy a discrete divergence-free
condition. Equation (15) defines the solenoidal spaces

Wi = (W) (1)
and
U= {u € R By € Wh, By = u} . (18)

In summary, we have the decompositions W = WZ’; +
Ws"ol and R™ = U + V. The space V of dimension k is
the null space of the stiffness matrix A and corresponds to
irrotational solutions of (6), the space U of dimension (n—
k) corresponds to the solenoidal solutions. Every solution
u € U is divergence-free in the sense that it satisfies (16)
for all f € F.

III. ITERATIVE METHODS FOR EIGENVALUE
PROBLEMS

As mentioned in the Introduction the Lanczos algo-
rithm is a popular method for computing extremal eigen-
values of a symmetric matrix A. The Lanczos algo-
rithm can be applied to generalized eigenvalue problems
of the form Az = AMz, where A is symmetric and
M is symmetric positive definite, if the inner product
< z,y >= My is used. If the matrices A and M
are not symmetric (as would result for some lossy elec-
tromagnetic media) the Arnodli algorithm is appropriate.
The Arnodli algorithm reduces to the Lanczos algorithm
when A and M are symmetric.

In electromagnetic applications it is a common desire to
compute a small set (m < 50) of dominant eigenvalues and
eigenmodes, not simply the most dominant mode. While
the standard Lanczos and Arnoldi methods are efficient
for computing extremal eigenvalues, the convergence to-
wards interior eigenvalues is poor. A solution is to restart
the iteration several times with new initial iterates, this is
the basis for recently developed implicitly restarted Lanc-
zos/Arnoldi methods as exemplified by the ARPACK soft-
ware library [12],[13]. We propose the use of ARPACK for
computing m dominant eigenvalue/eigenfrequency pairs,
where m is a user specified number. To compute these
eigenvalue/eigenfrequency pairs the required storage is
n - O(m) + O(m?) where n is the dimension of the ma-
trices. This is significantly less storage than would be
required by a standard Lanczos/Arnoldi iteration. The
algorithms in ARPACK automatically restart with a new
initial iterate using a sophisticate polynomial filter that
enhances convergence in the direction of the desired eigen-
values. The algorithm terminates when all m eigenvalues
have converged to within a user-specified tolerance. The
number of restarts required for converge of all m eigen-
value is problem dependent.

Although implicitly restarted Lanczos/Arnoldi meth-
ods are superior to their non-restarted counterparts, these
methods still have difficulty with our generalized eigen-
value problem (6) due to the very large number of de-
generate eigenvalues at w = 0. In the next section we
propose a modification of the discrete form of the vec-
tor Helmholtz equation that essentially moves the w = 0
eigenvalues towards the center of the spectrum with no
effect on the solenoidal eigenvalues, and hence ARPACK
can then be used without modification to compute the
desired solenoidal eigenmodes and corresponding eigen-
frequencies.

IV. MoODIFIED EIGENVALUE EQUATION

First, consider Gauss’ law in an inhomogeneous volume
Q

V-eE =p, (19)



where p is the charge density. The electric field and the
scalar potential are again approximated by E € W" and
¢ € L", and the charge density is approximated by p €
L". Applying the Galerkin procedure yields the discrete
equation

Qe = Nr, (20)

where E = e and jp = r, and the matrices are given by

Qi = / GW]’ -VL;, (21)
Q
Q

As discussed in Section I1.B. above the matrix Q = PTB
where P is the discrete gradient operator that maps F' to
V. Clearly, from (16) the null space of Q is U, the space
of discrete solenoidal vectors.

Using (20) above we form a generalized eigenvalue prob-
lem

QN !'Qe = \’Be. (23)

The matrix QTN—1Q is a square n by n matrix that can
be considered to be a discretization of V (V . GE). The

eigenvalue problem (23) has the same dimensional units as
our original problem (6) but does not necessary represent
anything physical. It is important to note that the spec-
trum of (23) is exactly opposite of the spectrum of (6), i.e.
equation (23) has exactly (n — k) A = 0 eigenvalues and
the corresponding eigenmodes are the solenoidal vectors
U, and there are exactly k eigenvalues with A > 0 and the
corresponding eigenmodes are the irrotational vectors V.

The matrix QTN—1Q can be used to shift the irro-
tational eigenmodes of our orignal problem without any
effect on the desired solenoidal eigenmodes. Specifically,
we form the modified generalized eigenvalue problem

(A+sQ"NT'Q) e = w’Be, (24)

where s is a user-specified parameter that shifts the irro-
tational eigenmodes to the middle of the spectrum. From
dimensional analysis the smallest non-zero eigenvalue of
(6) is approximately equal to the smallest non-zero eigen-
value of (23) therefore a shift of s > 100 is typically suffi-
cient to move the spurious eigenmodes.

In Equation (24) it is not necessary to actually invert
the matrix N, it is sufficient to approximate the inverse by
mass lumping. This has no effect on the desired solenoidal
eigenmodes. From a purely linear algebraic point of view
(24) can be written as Ze = w?’Be, where Z is a symmet-
ric positive definite matrix. We have thus formulated the
electromagnetic eigenvalue problem such that existing it-
erative solvers such as ARPACK can be used to compute
solenoidal eigenmodes without modification.

V. RESULTS

A. Inhomogeneous Rectangular Cavity

In order to demonstrate the efficacy of the above de-
scribed algorithm we begin by analyzing the inhomoge-
neous cavities described in Section A. of [16]. These three
rectangular cavities contain both a vacuum region and a
dielectric region. In [16] the dominant eigenfrequency for
these three cavities was computed using FDTD, a tetra-
hedral grid H(curl) FEM, and an analytical method, with
agreement to within 0.35 percent. We modeled these cav-
ities using a Cartesian mesh and the linear H(curl) finite
elements defined in [1] along with the standard bilinear
nodal finite elements. Since we are using a lower-order
finite element basis function we used a mesh consisting of
15120 zones, which results is a significantly larger general-
ized eigenvalue problem than that in [16]. We emphasize
that the purpose of this experiment is to validate the al-
gorithm defined in Section IV. above, we are not advocat-
ing the use of lower-order finite element basis functions.
We used ARPACK to compute the smallest eigenvalue
of (24), and within ARPACK we used the simple Jacobi-
preconditioned conjugate gradient method to “invert” the
B matrix within every Arnoldi iteration. Our computed
results agreed to the analytical results presented in [16]
to within 4 decimal places.

B. Homogenous Sphere

In this section we present results for a simple homoge-
nous sphere which has a well-known analytical solution.
Although this seems like a trivial problem, it is in fact
difficult due to the numerous degenerate eigenvalues. A
sphere of radius 0.05855m was modeled using an 55296
zone unstructured mesh. This corresponds to about 36
zones per sphere radius. Linear H(curl) finite element ba-
sis functions were used, resulting generalized eigenvalue
problem had n = 162528. In this analysis we assume the
speed of light is unity. The 20 smallest eigenvalues are
shown in Table I, along with the exact solution and the
corresponding error.

C. Accelerator cavity

As a real application of the algorithm proposed in this
paper we compute the 20 lowest eigenmodes of a linear
accelerator induction cell. Of particular interest is the
magnitude of the field in the accelerating gap, as this de-
termines whether or not the particular mode will couple
with the electron beam. Part of the cell is vacuum, an-
other part consists of oil with a relative permittivity of
€ = 4.5. The induction cell was modeled using a 33024
zone unstructured hexahedral mesh, which resulted in a
generalized eigenvalue problem of dimension n = 90237.
Again, ARPACK was used to compute the 20 smallest



Mode | Exact | Computed | Percent Error
TMI11 | 2196.39 2200.44 0.184
TMI11 | 2196.39 2200.44 0.184
TMI11 | 2196.39 2200.44 0.184
TM21 | 4368.84 | 4382.21 0.306
TM21 | 4368.84 | 4382.21 0.306
TM21 | 4368.84 | 4384.45 0.357
TM21 | 4368.84 | 4384.45 0.357
TM21 | 4368.84 | 4384.45 0.357
TE11 | 5888.69 5911.07 0.380
TE11 | 5888.69 5911.07 0.380
TE11 | 5888.69 5911.07 0.380
TM31 | 7214.14 7248.11 0.470
TM31 | 7214.14 7248.11 0.470
TM31 | 7214.14 7248.11 0.470
TM31 | 7214.14 7248.11 0.470
TM31 | 7214.14 7252.40 0.530
TM31 | 7214.14 7252.40 0.530
TM31 | 7214.14 7252.40 0.530
TE21 | 9688.19 9731.82 0.450
TE21 | 9688.19 9731.82 0.450
TABLE 1

Exact vs. computed eigenvalues for 36 zone per radius sphere

eigenvalues of the modified generalized eigenvalue prob-
lem (24). In order to visualize the eigenmodes the magni-
tude of the electric field at the zone-center is computed.
For example, Figures 1-4 shows the 1st, 5th, 13th, and
20th eigenmodes of the induction cell. In these illustra-
tions only one-half of the problems is shown so that fields
in the interior can be seen. Naturally, there is no analyt-
ical solution to compare to. Although it may be difficult
to discern from the illustrations, the 1st and 20th modes
have a maximum electric field magnitude in the accelerat-
ing gap and hence will couple strongly with the electron
beam, whereas the 5th and 13th modes are examples of
modes that will not couple strongly with the beam.
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Fig. 2. 5th eigenmode of induction cell, f = 280Mhz

Fig. 4. 20th eigenmode of induction cell, f = 523Mhz

Fig. 3. 13th eigenmode of induction cell, f = 439Mhz



